Bases physiques de l'imagerie en Médecine Nucléaire (MN)

Pr. Malika ÇAOUI

Service de Médecine Nucléaire CHU International Cheikh Zaid Faculté de Médecine et de Pharmacie - Rabat-

Objectifs du cours des bases d'imagerie en MN

- Définir le principe de l'imagerie en médecine nucléaire
- Définir la composition, le rôle et les contraintes liées au radiotraceur
- Énumérer les différentes modalités de l'image scintigraphique
- Identifier les différents appareils : SPECT ; SPECT-CT ; TEP-TDM
- Différencier les caractéristiques globales de l'imagerie radiologique de l'imagerie en médecine nucléaire.

L'imagerie médicale

- L'imagerie utilisant des rayonnements ionisants (RI)
 - RX en radiologie: imagerie par atténuation: radiographie
 conventionnelle, amplificateur de luminance, scanner (TDM ou CT),
 - Rγ (gamma) en médecine nucléaire: imagerie par émission: scintigraphie
- Imagerie n'utilisant pas de RI:
 - US en échographie et écho-doppler
 - IRM : champ magnétique qui fait vibrer les protons de l'hydrogène

Quelques dates

- Radioactivité: découverte en 1896 par Becquerel, qui travaillait sur le RX, que Röentgen avait découvert par hasard en 1895.
- Il observa des sels d'uranium qui impressionnaient à l'obscurité une plaque photographique. Il en conclut : l'uranium émettait un rayonnement
- Pierre et Marie Curie: Poursuivirent ensemble les travaux sur la radioactivité naturelle découverte en 1896 par Henri Becquerel, à partir d'un sel d'uranium
- En 1898 Ils appelèrent ce phénomène Radioactivité
- 1910-1925: Augmentation de fréquence de décès par leucémie chez radiologues
- 1928: Constitution de la CIPR « Commission Internationale de Protection contre les Rayonnements »
- Janvier 1941: 1ère dose d'iode* 13I administrée pour traiter maladie de Basedow

Principe de l'imagerie en MN +++

- On administre au patient un radiotraceur émetteur de R γ par voie intraveineuse (IV) le plus souvent, par voire orale (lode 131) ou par inhalation (gaz*)
- Le patient placé sous gamma caméra, émet des Rγ qui interagissent avec le cristal du détecteur: une image par émission est obtenue appelée: Scintigraphie
- La scintigraphie détermine la distribution du radiotraceur introduit dans l'organisme et véhiculé par le sang au sein d'un organe, ou d'une structure particulière de l'organisme...

Traceur et marqueur+++

Traceur (ou vecteur):

- Composition : préparation de structures organiques caractéristiques d'une fonction physiologique ou métabolique.
- Rôle du Traceur : acheminer le marqueur vers l'organe à explorer.

Marqueur (isotope radioactif):

- Composé radioactif émetteur γ, trois groupes:
 - $-\gamma$ pur: Tc99m (Tp=6h) ou β -et γ : lode 131: seul γ est détecté (Tp=8j)
 - $-\beta^+$: émet 2 R γ détectés par TEP: FDG-F18 (Tp=110mn: vie courte)
- Rôle du marqueur : il émet des R γ susceptibles de détection
- Il est utilisé seul (lode 131 ou 123, Tl 201...)
- Il sert à marquer un traceur: MAG3-Tc99m (Rein), MDP-Tc99m (os)....

Radiopharmaceutique (RP) ou Radiotraceur +++

 Le radiotraceur ou (RP) est un médicament utilisé en MN pour porter en général un diagnostic ou traiter. Il est composé:

- Radiotraceur Marqueur γ (Isotope*) + Traceur (Vecteur)
- \Box Le radiotraceur est obtenu dans une enceinte blindée et ventilée par marquage du Traceur + Marqueur (γ): molécule marquée
- ☐ Le marquage doit s'effectuer dans des conditions rigoureuses de respect des consignes d'hygiène (asepsie) et des règles de radioprotection (contamination).

7

Contraintes liées au Radiotraceur+++

Le radiotraceur doit répondre à des critères physiques:

- \Box Détectable (émetteur γ) et non nocif pour le patient
- ☐ Période effective: Te = Tp.Tb/(Tp + Tb) : temps à l'issue duquel la moitié du radiotraceur est éliminée de l'organisme. Te doit être:
 - courte pour éviter des irradiations nocives (radioprotection)
 - mais suffisamment longue pour permettre une détection efficace

Le radiotraceur doit répondre à des critères chimiques : Il doit être:

- de liaison stable et forte, pour être délivré au tissu cible et ne pas perturber le phénomène étudié.
- * incorporé à sa cible une fois rencontrée
- sinon être rapidement éliminé

Procédures en médecine nucléaire ++

- Le radiotraceur prêt à l'emploi est administré au patient.
- Le patient est isolé dans une salle d'attente protégée prévue à cet effet et reçoit des consignes de radioprotection.
- **Une acquisition est réalisée à l'aide da gamma caméra de type:**
 - SPECT (Single Photon Emission Tomography) ou TEMP en français (Tomographie par Émission Monophotonique) à une, 2, ou 3 têtes.
 - PET (Positron Emission Tomography) ou TEP (Émission de Positons)
- La scintigraphie est réalisée selon différents types d'acquisition:

Modalités d'acquisition en MN++

- Différentes modalités d'acquisitions scintigraphiques:
- 1. <u>Acquisition statique</u> avec un détecteur en position fixe par rapport au patient : scintigraphies de la thyroïde, des reins....
- 2. <u>Acquisition du corps entier</u>: succession d'images statiques et jointives: les détecteurs se déplacent simultanément et balayent le corps du patient de la tête aux pieds. Ex: Scintigraphie osseuse
- 3. <u>Acquisition tomographique</u>: La Tomographie par Émission de Simple Photon (*TEMP ou SPECT*): les détecteurs tournent autour du patient, on obtient une représentation numérique en 3D d'une distribution radioactive au niveau du corps: thorax, bassin, crâne...

- 4. <u>Acquisition dynamique</u> en fonction du temps: une série d'images statiques successives permettant d'étudier la distribution du RP en phase vasculaire. Faible durée d'acquisition par image d'où peu d'informations . L'image est de faible résolution.
 - Ex: Phases vasculaires des scintigraphies: rénale et osseuse :
 - Scintigraphie des cavités cardiaques....
- 5. <u>Acquisition synchronisée à l'ECG</u>: tomo-scintigraphie du myocarde les détecteurs disposés en « L » enregistrent simultanément la radioactivité issue du myocarde et l'activité électrique du cœur : c'est une acquisition synchrone aux battements cardiaques qui sont enregistrés par ECG.

Procédures en médecine nucléaire

Générateur du Tc99m

Hotte de préparation des RP

Elution et obtention du Tc99M

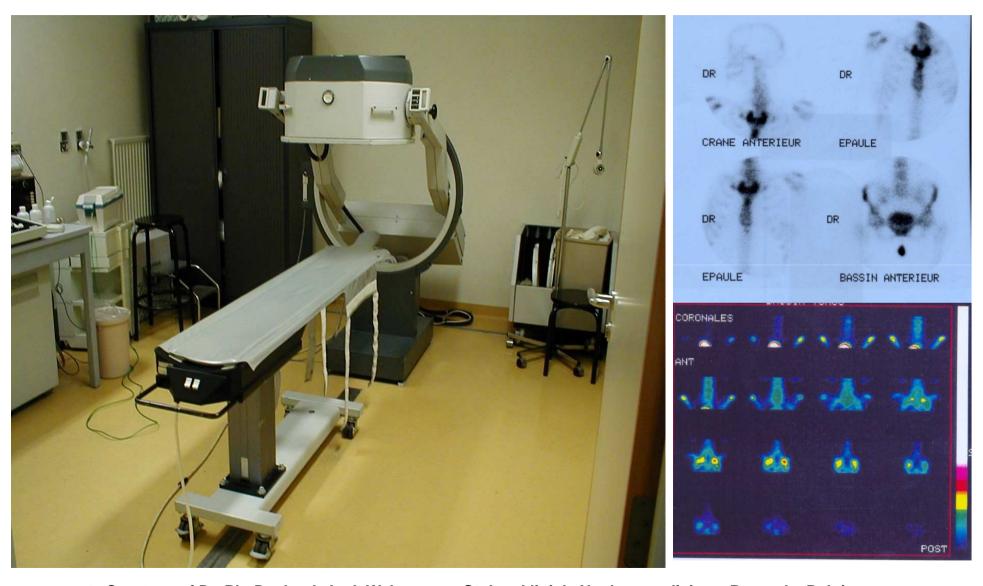
Préparation du RP

Activimètre: mesure l'activité (en Bq ou Ci)

Procédures en médecine nucléaire (suite)

Injection du RP au patient

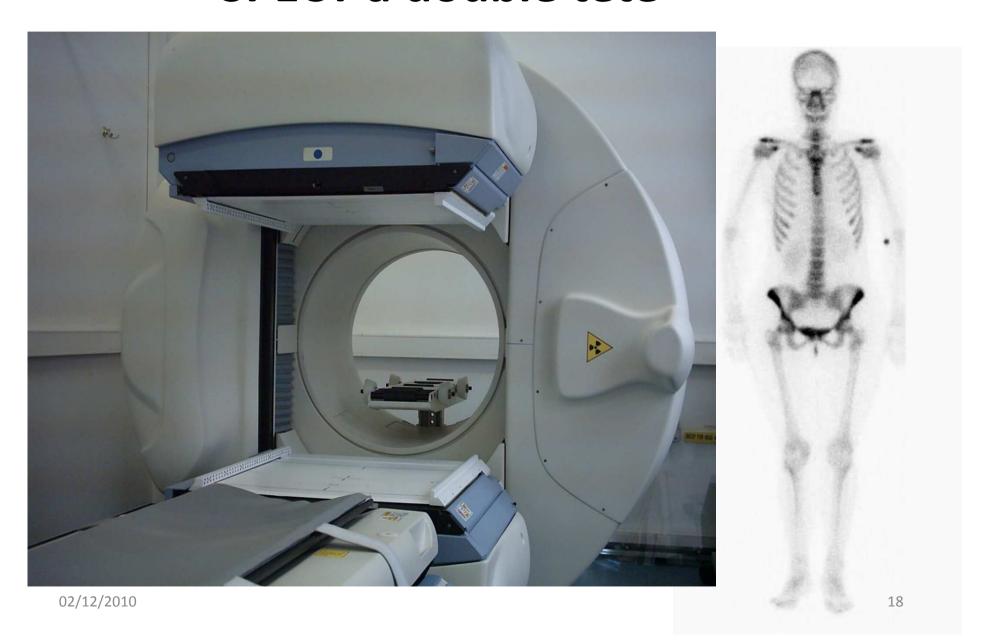
Gamma-Caméra SPECT à deux


Poste d'acquisition et de surveillance

Scintigraphie osseuse

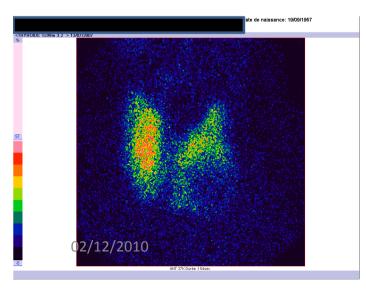
Scintigraphe à Balayage (1960)

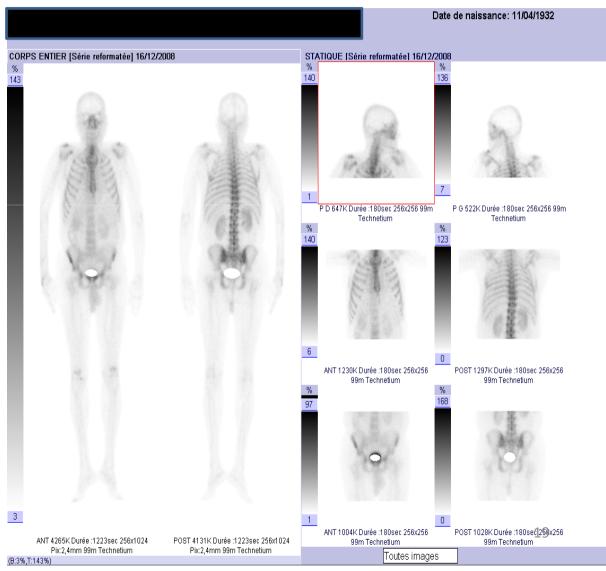
Gamma Caméra (années 80)


Les nouvelles machines

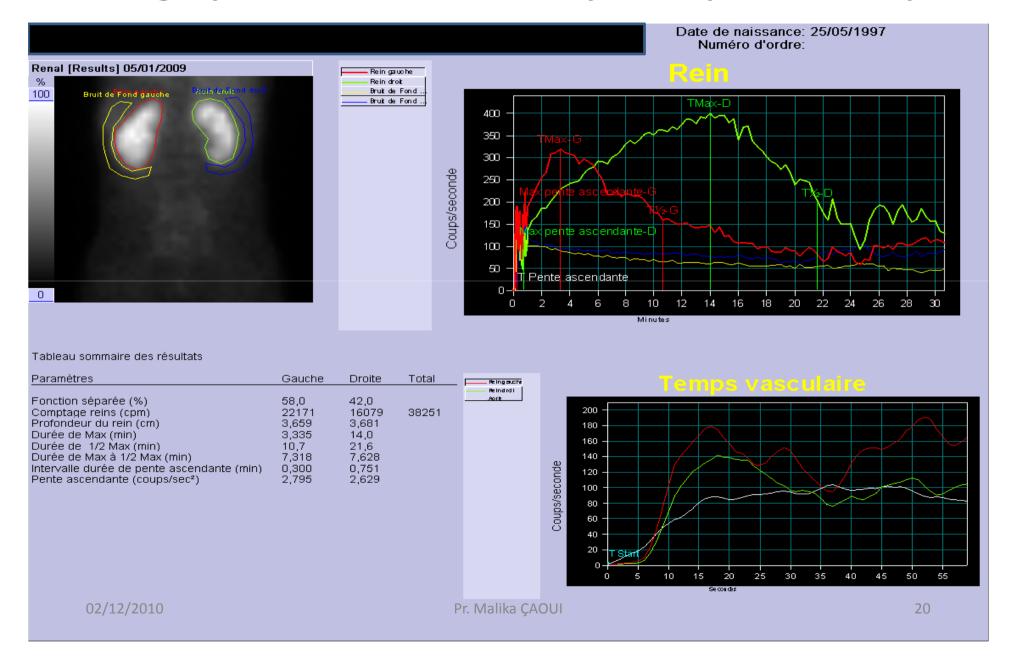
Gamma caméra SPECT simple tête

02/12/2010

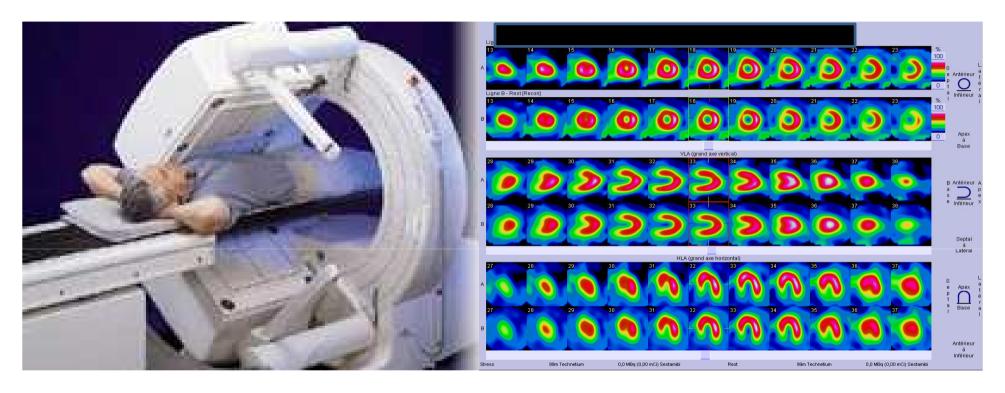

SPECT à double tête



Scintigraphies statiques


Scintigraphie osseuse

Scintigraphie de la thyroïde



Scintigraphie rénale: études dynamique et statique

Scintigraphie myocardique synchronisée à l'ECG

Détecteurs SPECT : double têtes disposés en « L » En Tomoscintigraphie myocardique

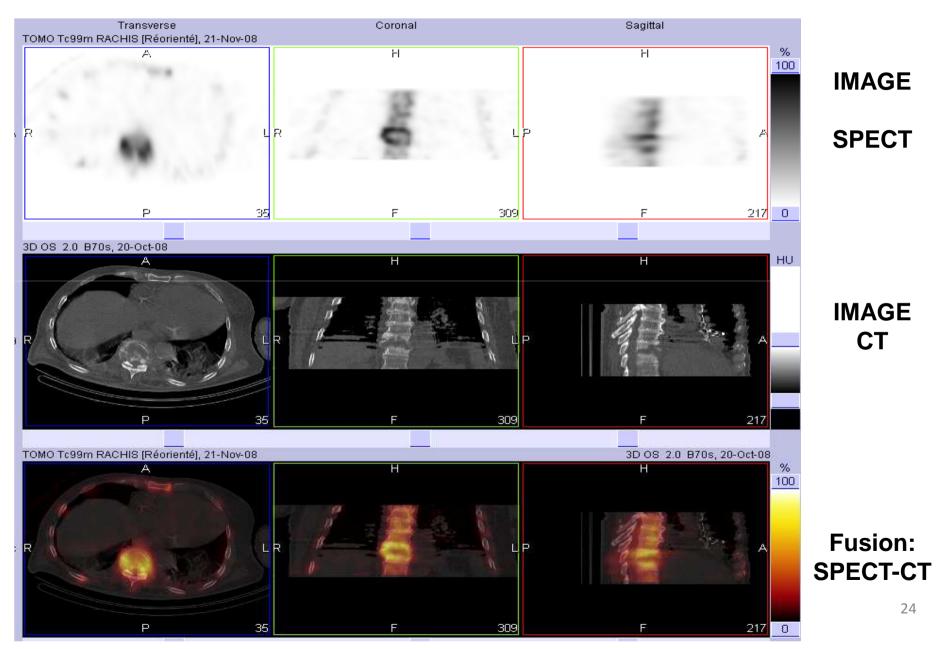
Images de la perfusion myocardique: petit axe et grands axes vertical et horizontal

Image Radiologique et Image en MN +++

Médecine Nucléaire

- Image de caractère fonctionnel
- Diagnostic précoce en général meilleure sensibilté
- Qualité image: moindre
- Utilise des sources non scellées: radiotraceurs (contamination+)
- Image par émission: détection de Rγ émis par l'organisme du patient qui a reçu le radiotraceur

Radiologie


- Image de type morphologique
- Peu sensible au remaniement physiologique précoce
- Image d'excellente qualité
- Utilise des sources scellées
 (Tube à RX: exposition externe)
- Image par atténuation du faisceau de RX qui traverse les structures de l'organisme.

SPECT-CT +++

Deux types d'appareils sont couplés et accolés: SPECT-CT.

- TDM multi barrettes (4,16,64,...) permet de réaliser en quelques minutes, une acquisition du corps entier: image TDM
- SPECT: La Tomographie par Émission de Simple Photon (TEMP ou SPECT) avec deux têtes détectrices: image SPECT
- De la fusion de l'image TDM avec l'image SPECT résulte: image morphologique (TDM) et fonctionnelle (SPECT) d'excellente qualité et de grande précision diagnostique surtout dans l'exploration du squelette.....
- Image radiologique et image en MN sont complémentaires

Images de SPECT-CT

SPECT-CT

SPECT-CT

Courtesy of Dr. Ph. Declerck, Ir. J. Walravens – St-Janskliniek, Nuclear medicine – Be

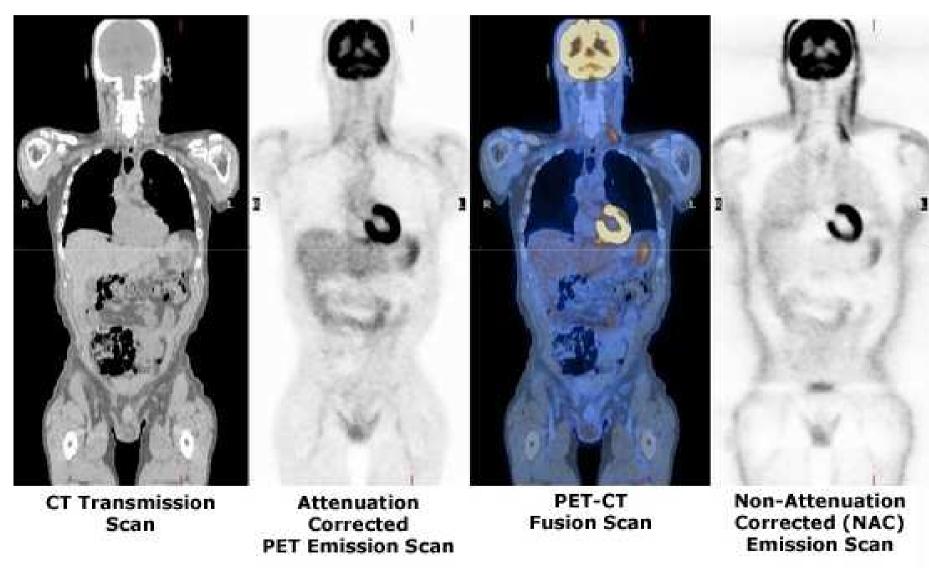
02/12/2010

TEP-TDM ou PET-CT +++

Deux types d'appareils sont couplés et accolés: TEP-CT.

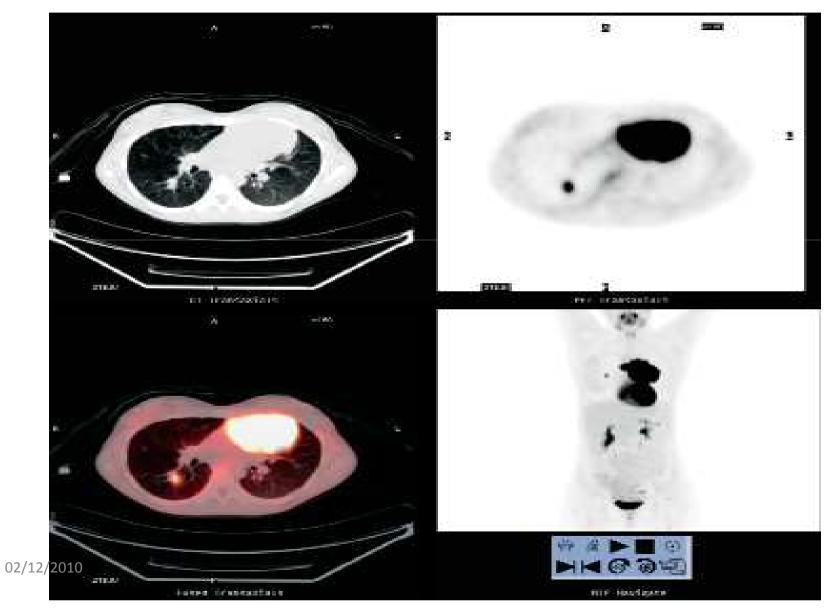
- Image TDM fournie par un CT multi barrettes (4,16,64..)
- Image TEP: détecteurs disposés en couronne permettant la détection simultanée en coïncidence de 2 photons γ de 511 keV, émis à 180° l'un de l'autre et résultant de l'annihilation β +.
- Image TEP informations sur la localisation et la quantité du RP ß+dans l'organe. Les émetteurs ß+: FDG-F18; NH3.. (ß+: O15 = 2 min; N13 = 10 min; C11 = 20 min..)
- De la fusion de l'image TDM avec l'image TEP résulte: image morphologique (TDM) et fonctionnelle (TEP) d'excellente qualité et de grande précision diagnostique mais examen coûteux.

Imagerie PET-CT au FDG-18 en cancérologie +


- Le FDG (18-FluoroDéoxyGlucose) est un radiotraceur formé par:
 - le déoxyglucose : métabolite cellulaire et analogue du glucose
 - lié au marqueur Fluor-18 (Tp=110 mn), produit de cyclotron.
- Le FDG permet d'étudier le métabolisme du sucre. Après IIV, le FDG s'accumule dans la cellule cancéreuse (avide de sucre).
- Le PET détecte ce sucre et produit une imagerie métabolique
- PET-CT: Image combine l'information anatomique à l'information métabolique d'où un repérage anatomique précis des anomalies hypermétaboliques. En cancérologie, FDG pour diagnostic et suivi: lymphomes, leucémies, Cancers: poumon, digestifs, ORL...

PET-CT

02/1


Images PET-CT

Images PET-CT

Images TEP-TDM

Quelques Références

- DESMN: Quantification en tomographie d'émission Irène Buvat Mars 2010 Irène Buvat IMNC -UMR 8165 CNRS- Orsay
- The Journal of Nuclear Medicine (http://www.snm/org)
- Imagerie fonctionnelle en médecine nucléaire : du phénomène Physiologique à l'image- Irene Buvat-U678 inserm, CHU Pitié-Salpêtrière, France
- Médecine Nucléaire 1 Les différents traceurs et leur production- Les détecteurs g et b+ Irène Buvat -U678 inserm, CHU Pitié-Salpêtrière, France
- Pr. Frédéric Paycha Unité de Médecine Nucléaire CHU Louis Mourier Colombes, France
- Guide des technologies de l'imagerie médicale et de la radiothérapie: quand la théorie éclaire la pratiqueJ-P.Dillenseger,...E. Moerschel,J.P.Dillenseger-Masson 2009-
- Médecine nucléaire: manuel pratique . M Rubinstein, É. Laurent, M.Stegen-Ed De Boeck Université-2000 Be
- Hybrid PET/CT and SPECT/CT Imaging: A Teaching File-D. Delbeke, O.Israel. Ed Springer 2004
- JOINT PROGRAM IN NUCLEAR MEDICINE Electronic Learning Resources Harvard Medical School RC. Rajadhyaksha, JA Parker, L.Barbaras; VH Gerbaudo